太阳系的形成与演化是怎么样的

  太阳系的形成,都是集中在时间上的年代来直接去测定它到底有多大的年龄的,对此太阳系怎么形成的,形成的原因到底如何?下面一起来看看吧。

  太阳系怎么形成的,形成的原因

  太阳系

  太阳系是以太阳为中心,和所有受到太阳的引力约束天体的集合体。包括八大行星(由离太阳从近到远的顺序:水星、金星、地球、火星、木星、土星、天王星、海王星 )、以及至少173颗已知的卫星、5颗已经辨认出来的矮行星和数以亿计的太阳系小天体。

  银河系是一个棒旋星系,直径十万光年,包括一千亿到四千亿恒星。太阳是银河系较典型的恒星,位于分支悬臂猎户臂上,离银河系中心有2.61万光年,太阳系移动速度约240㎞/s,2.26亿年转一圈。

  太阳系中的八大行星都位于差不多同一平面的近圆轨道上运行,朝同一方向绕太阳公转。除金星及天王星以外,其他行星的自转方向和公转方向相同。彗星的绕日公转方向大都相同,多数为椭圆形轨道,一般公转周期比较长。

  轨道环绕太阳的天体被分为三类:行星、矮行星和太阳系小天体。

  行星是环绕太阳且质量够大的天体。

  太阳系的年代

  太阳系的形成的时间框架是用放射性同位素测定方法测定的。科学家估计太阳系大约46亿岁。地球上最老的已知的矿物颗粒大约44亿岁。 因为地球表面经常性地被侵蚀作用、火山活动和板块运动改造,这样老的岩石比较稀少。科学家用在太阳星云早期凝缩中形成的陨石来估计太阳系的年龄。几乎所有的陨石 (见 魔谷陨石)都被发现有46亿岁,显示太阳系大约至少也是这样老。

  对其它恒星的星盘研究对太阳系形成的时间表的建立也有颇多贡献。1百万到3百万岁的恒星多富含气体,而超过1千万年的恒星星盘含很少到几乎没有气体,显示它内部的巨大气体行星已经停止生成。

  星系碰撞和行星干扰

  尽管宇宙中绝大多数星系在远离银河系,我们本星系群中最大的星系仙女座星系却在以每秒120公里的速度撞向银河系。 在20亿年后,仙女座星系和银河系将相撞,潮汐力扭曲它们的外周臂成巨大的潮汐尾而导致二者都产生变形。当这样的初始阶段的干扰发生的时候,天文学家计算出太阳系有12%的机会被从银河系拉向外围,有3%的机会它会被仙女座星系引力俘获成为它的一部分。 经过进一步的一系列的侧击,太阳系被抛出的机会达到30%,两个星系的超重黑洞将合并。最终,大约在70亿年的时间,银河系和仙女座星系将完成合并形成一个巨大的椭圆星系。在合并中,如果有足够的气体,增加了的引力将把气体吸引到形成中的椭圆星系的中心。这将导致一个短期的密集的恒星生成时期叫星爆。 此外,向内坠落的气体将填塞新形成的黑洞,把它变成一个活动星系核。这些相互作用将有可能把太阳系推向新星系的外周光晕中,使它免受这些碰撞的辐射。

  通常的误解认为这样的碰撞会干扰太阳系的行星轨道。虽然经过的恒星有可能会把行星剥离太阳系送入星系空间,但恒星间的距离如此之巨以至于银河系和仙女座星系的相撞对单个的恒星系统的干扰是可以忽略不计的。虽然太阳系作为一个整体可能会被这些事件影响,太阳和行星本身预计不会受到干扰。

  但是,随着时间的流逝,遭遇另一颗恒星的累计概率增加,对行星的干扰无可避免。假设宇宙末日的大挤压或大撕裂不会发生,有计算认为途经的恒星在会1千万亿年内完全剥去死亡的太阳的所有行星。这标志着太阳系的终结。虽然太阳和行星可能会存在下去,但太阳系,无论是在任何意义上都将不复存在。 推荐阅读:人类探索火星的重大发现

  太阳系的形成与演化

  现今太阳系形成的标准理论:星云假说,从其在18世纪被伊曼纽·斯威登堡、伊曼努尔·康德、和皮埃尔-西蒙·拉普拉斯提出之日起就屡经采纳和摒弃。对该假说重大的批评是它很明显无法解释太阳相对其行星而言缺少角动量。 然而,自从1980年代早期对新恒星的研究显示,正如星云假想预测的那样,它们被冷的气体和灰尘的盘环绕着,才导致这一假想的重新被接受。

  要了解太阳将如何继续演化需要对它的能量之源有所认知。亚瑟·爱丁顿对爱因斯坦的相对论的确认导致他认识到太阳的能量来自于它核心的核聚变。 1935年,爱丁顿进一步提议其他元素也有可能是在恒星中形成。 弗雷德·霍伊尔 进一步详尽阐释这一假设,认为演化成为的红巨星的恒星会在其核心产生很多比氢和氦重的元素。当红巨星最终抛掉它的外层时,这些元素将被回收以形成其它恒星。自1950年代太空时代降临,以及1990年代太阳系外行星的发现,此模型在解释新发现的过程中受到挑战又被进一步完善化。

  从形成开始至今,太阳系经历了相当大的变化。有很多卫星由环绕其母星气体与尘埃组成的星盘中形成,其他的卫星据信是俘获而来,或者来自于巨大的碰撞(地球的卫星月球属此情况)。天体间的碰撞至今都持续发生,并为太阳系演化的中心。行星的位置经常迁移,某些行星间已经彼此易位。这种行星迁移现在被认为对太阳系早期演化起负担起绝大部分的作用。

  太阳系的形成和演化始于46亿年前一片巨大分子云中一小块的引力坍缩。大多坍缩的质量集中在中心,形成了太阳,其余部分摊平并形成了一个原行星盘,继而形成了行星、卫星、陨星和其他小型的太阳系天体系统。

  这被称为星云假说的广泛接受模型,最早是由18世纪的伊曼纽·斯威登堡、伊曼努尔·康德和皮埃尔-西蒙·拉普拉斯提出。其随后的发展与天文学、物理学、地质学和行星学等多种科学领域相互交织。

  就如同太阳和行星的出生一样,它们最终将灭亡。大约50亿年后,太阳会冷却并向外膨胀超过现在的直径很多倍(成为一个红巨星),抛去它的外层成为行星状星云,并留下被称为白矮星的恒星尸骸。在遥远的未来,太阳的环绕行星会逐渐被经过的恒星的引力卷走。它们中的一些会被毁掉,另一些则会被抛向星际间的太空。最终,数万亿年之后,太阳终将会独自一个,不再有其它天体在太阳系轨道上。

  有关世界起源和命运的思想可以追溯到已知最早的文字记载;然而,在那大部分的时代里没有人试图把这样的理论与“太阳系”的存在联系起来,原因很简单,因为当时时人一般不相信我们现在了解的太阳系是存在的。迈向太阳系演化形成理论的第一步是对日心说的广泛认同,该模型把太阳放在系统的中心,把地球放在环绕其

  的轨道上。这一理论孕育了数千年,但直到17世纪末才广泛被接受。第一次有记载的“太阳系”术语的使用是在1704年。

2.

相关推荐文章:星星为什么有不同的颜色   夜晚看星星,有时会看到星星呈现不同的颜色,一会儿红,一会儿白,一会儿还会有绿色、蓝色等.其实星星的颜色是固定的,不会在短时间内变化.下面是小编为大家带来的有关为什么星星有不同的颜色德 天文地理。   星星的颜色   宇宙中恒星的颜色代表温度、主要成分和恒星演化阶段,恒星诞生初期的时候温度极高,热核强烈聚变,发蓝光的恒星温度是最高的,之后慢慢冷却,逐渐进入少年时期,亮度降低,光线呈现白色,内部物质经过热核聚变发光而呈白热化状态,在这之前的恒星演变是很不稳定的,待恒星演化到了“中年”进入主序星(我们的太阳就是一颗主…海洋里的水为什么比较干   海水里这么多的盐是从哪儿来的呢?科学家们把海水和河水加以比较,研究了雨后的土壤和碎石,得知海水中的盐是由陆地上的江河通过流水带来的。下面是小编为大家带来的有关海洋里的水为什么比较干的天文地理。   海洋里的水哪里来   辽阔的海洋占地球表面近3/4的面积,海水是地球水的主体,占地球总水量的96.53%。如此众多的海水是从哪里来的?   早先人们认为,这些水是地球固有的。当地球从原始太阳星云中凝聚出来时,这些水便以结构水、结晶水等形式存在于矿物和岩石中。以后,随着地球的不断演化.轻重物质的分异,它们便逐渐从矿物和…月球与地球的年龄哪个大   月球和地球两个星球,大家可能会认为地球的年龄比较大,但是科学家所认为道,其实是月球比地球更加年龄大,而月球是否是空心?还是实心?这些也是无从所知,那么月球与地球的年龄哪个大到底如何?下面一起来看看吧。   月球与地球年龄哪个大   月球年龄大。   现在所说的年龄是指形成固体表面的时间,最古老的地球岩石有46亿年,最古老的月球岩石是50亿年。   也许月球比地球小,冷却更快。   德英两国科学家最新精确测得月球年龄427亿年.   最近,德国和英国科学家分析了美国“阿波罗”号飞船带回的不同月球岩石样本,根据岩石…在我们认知内宇宙到底有多大呢   人类所出地球最远都是在月球,而至于整个宇宙来讲,到底是有多大的呢,对此宇宙到底有多大到底如何?下面一起和5068小编来看看吧。   宇宙到底有多大?   把世界上最伟大的数学家请到世界上最先进的计算机前,请他用人类所已知的最大数来表述宇宙的尺度,让全人类都来做他的助手,不停地帮他在这个大数后面添“0”,演算的最后结果会是多少呢?结果将是“毫无结果”,人类永远无法算出这道题,因为这道题本身不是数学题。   “其大无外”,“宇宙是无限的”,古今哲学家们不厌其烦地重复着这一答案,认为这才是对宇宙尺度问题的准确表述。其…引力波是不是属于电磁波   引力波和电磁波到底这两者之间有着怎样的关系?而对于引力波又是什么来的呢,对此引力波是什么?引力波是电磁波到底如何?下面一起来看看吧。   引力波是不是电磁波   什么是“引力波”   在讲引力波之前,我们先说说大家更为熟知的电磁波。   100 多年前人类发现了电磁波,后来我们拥有了微波炉、手机信号、WIFI和GPS定位系统。   和电磁波类似,就万有引力的认识,爱因斯坦这个科学巨人认为牛顿之前的理解太naive,在爱因斯坦的相对论中,认为万有引力是一种跟电磁波一样的波动,称为引力波。   如果无法想象理解我们…

未经允许不得转载:全书网 » 太阳系的形成与演化是怎么样的

赞 (0)